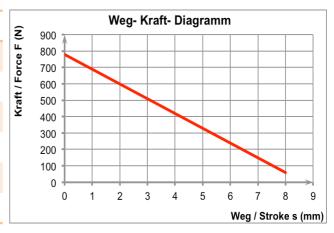
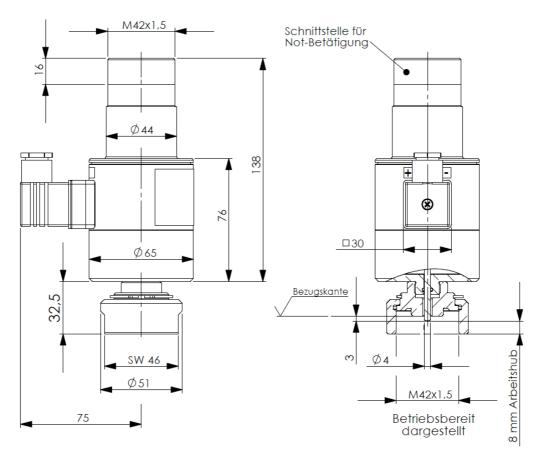


## Technische Datenblätter


### Elektromagnetischer - Auslöser Typ: 0229


Der elektromagnetische Auslöser entwickelt durch den Einsatz von hoch energetischen Permanentmagneten eine hohe Haltekraft welche in Tellerfedem gespeichert ist. Durch das anlegen eines elektrischen Stromes wird das permanent-magnetische Feld neutralisiert und der Auslöser gibt seine Kraft über den Stößel ab.

Durch die schnelle Schaltgeschwindigkeit von kleiner 10 ms kommen derartige Auslöser zum Einsatz in der: Ventiltechnik, Arretier-/ und Verschlusseinheiten, Bereichsventilen und vieles mehr.



| Technische Daten:         |       |      |
|---------------------------|-------|------|
| Nominalspannung           | 24    | V DC |
| Spulenwiderstand          | 50    | Ohm  |
| Schutzklasse              | IP 65 |      |
| Auslöseimpuls für < 10 ms | 0,5   | Α    |
| Stromlose Haltekraft      | > 150 | N    |
| Auslösekraft bei 1mm Weg  | 680   | N    |








## Technische Datenblätter

### Bi- Stabiler Hubmagnet Typ: 0081

Der Bi-stabile Hubmagnet zeichnet sich dadurch aus, dass beide Endlagen (Hubanfang u. Hubende) ohne äußere Energiezufuhr gehalten werden. In der Hubendlage wirkt ein Permanentmagnet für die notwendige Haltekraft in der Hubanfangslage wirkt eine Rückstellferder. Zum Schalten des Hubmagneten ist lediglich ein kurzer Impulsstrom für die Dauer von ca. 10ms nötig. Die Betätigungskraft liegt je nach Verwendung der Rückstellfeder bei 12 N

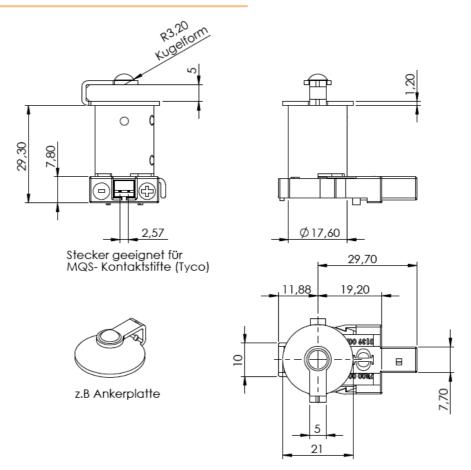


| Technische Daten:                |       |      |
|----------------------------------|-------|------|
| Nominalspannung                  | 12    | V DC |
| Spulenwiderstand                 | 6     | Ohm  |
| Schutzklasse                     | IP 00 |      |
| Auslöseimpuls für < 10 ms        | 0,5   | Α    |
| Stromlose Haltekraft incl. Feder | >11   | N    |
| Auslösekraft der Feder           | 4     | N    |








#### Bi- Stabiler Haftmagnet Typ: 0139

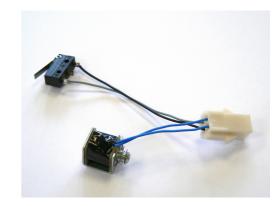
Die Ankerplatte des Haftmagneten wird durch einen integrierten Permanenetmagneten gehalten. Zum Schalten des Haftmagenten ist lediglich ein kurzer Impulsstrom für die Dauer von ca. 10ms nötig. Die Betätigungskraft liegt je nach Verwendung der Rückstellfeder bei 12 N.

Anwendungsbeispiel des beschriebenen Haftmagneten sind: Türhaltesystem, Auslösemechanismen, crash aktive Kopfstützen, Überrolverriegelungen, Klappenhalter, kinematische Getriebesysteme etc.

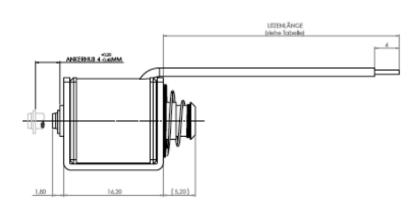


| Technische Daten:            |       |      |
|------------------------------|-------|------|
| Nominalspannung              | 12    | V DC |
| Spulenwiderstand             | 2,5   | Ohm  |
| Impulsstrom zum lösen < 10ms | 4,8   | Α    |
| Schutzklasse                 | IP 00 |      |
| Stromlose Haltekraft         | > 28  | N    |
| Auslösekraft der Feder       | > 12  | N    |

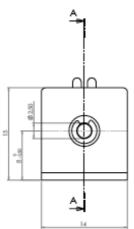


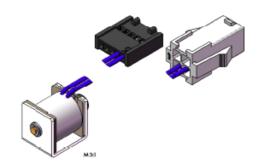



# Technische Datenblätter


#### Impuls Hubmagnet: 0098

Masse


Der Impulsmagnet wird durch einen zeitlich kurzen Stromimpuls, der typischerweise durch einen Kondensator zur Verfügung gestellt wird, betrieben. Dadurch wird eine sehr hohe Dynamik und Schaltgraft im Vergleich zur Baugröße erreicht.




#### **Technische Daten:** Nominalspannung 12/24 V DC Spulenwiderstand 4,6/1,2 Ohm Impulsstrom zum lösen < 10ms **Impuls** Α Kondensator-Kapazität min. 4000 $\mu F$ °C Temperatururbereich -20 bis 85 Schutzklasse **IP 00**



16





#### Mögliche Steckervarianten:

- Tyco UNIV M-N-L CAP Steckergehäuse
- Lumberg MBC5 MiniModul- Gehäuse